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INTRODUCTION

Beamforming with large acoustic arrays suffers from inaccurate knowledge of array
element locations. Self-cohering is a method of using the signals from strong sources to
locate array elements accurately enough that beamforming may be successful on weaker
sources at other frequencies arriving from different directions.

This report describes an attempt to test self-cohering with a mile-long, 40-element
towed line array in order to answer the following questions:

(1) How "straight" is the line array under "ideal" towing conditions?

(2) Can array elements be located accurately enough that the array can be used for
beamforming even when the towing ship is turning?

(3) Are the beam patterns of a "crooked" line array good enough to be useful if
the towing ship were slowed down (to reduce self-noise) until the array sagged?

The results of this experiment indicate that it is sometimes possible to successfully
perform self-cohering by means of very simple algorithms. However, some of the phenomena
involved are only poorly understood. Thus care mLst be exercised in applying these algor-
ithms if failure is to be avoided. All of the work described here uses frequency-domain
beamforming. As indicated in Ref. I, there are many other ways to implement self-cohering;
the method described here is not necessarily the best, but does at least establish feasibility.

DATA

The data used in this experiment come from magnetic tape recordings of an actual
at-sea exercise performed several years ago with a towed line array. The exercise itself
lasted for more than a week, but only 1-1/2 hours of data, taken from 3 separate days, were
used for the self-cohering experiment. Ship's logs and data recorder logs were scanned to
find data representative of times when the towed array was "working well" (ie, presumably
straight) and "very noisy" (ie, presumably crooked). The purpose of the exercise had
nothing to do with self-cohering, of course, so even these carefully chosen data do not
provide many answers to questions about self-cohering beyond simple feasibility.

The towed array itself consisted of 40 omnidirectional hydrophones equally spaced
at 125-ft intervals along the towed line (a total length of 4875 ft). The array was attached
to the towing ship via a 4000-ft length of towing cable, part of which was a compliant
section for strain relief. A few of the elements were equipped with depth sensors, but their
accuracy is disputed among persons connected with the data-collecting exercise.

Electronic preamplifiers associated with the array elements were calibrated in such a
manner that recorded data were supposedly compensated for nonuniformities in sensitivity
and phase between individual hydrophones.

Actual data recording was done on analog recorders, but the data segments used for
self-cohering were transcribed onto digital tapes using 8-bit analog-to-digital converters
running at 260.42 samples per second.

No attempt was made during the data-collecting exercise to measure actual element
locations. The quality of beam patterns is the only indication of how well self-cohering
is working, since the self-cohered array shapes cannot be compared with independent
measurements.

1B. Geelhood, "Self Cohering of a Flexible Linear Array," NUC Memo 6513. 272-77, 29 Dec 1976.
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Supposedly, the data-collecting exercise included a second ship (many miles from
the array) dangling two acoustic sources (at different frequencies) in the ocean as calibration
points for the array. People connected with the exercise claim they were sometimes able to
beamform the array on these control sources, although the control sources were abnormally
weak and often absent. In the time segments analyzed for self-cohering, many strong signals
were detected, but the control sources were never detected. Therefore, the location of the
sources used for self-cohering is unknown, and again there is no way of cross-checking the
self-cohering results to be sure that apparent improvement is not merely an artifact.

BEAMFORMING

All of the self-cohering work reported here was done in the frequency domain,
which implies the following processing procedure. The time history from each array element
is Fourier transformed. The frequency bins for which most of the array elements show
relatively large-magnitude Fourier coefficients are designated "source frequencies." For
each source frequency, the complex Fourier coefficient from each element is phase rotated
according to the element's position in the array and according to the desired steering direc-
tion; the results from all the elements are summed, and the magnitude of the sum is the
beam pattern response for that steering angle for that frequency. A full beam pattern for
each frequency is formed by plotting the response as a function of steering angle.

z

desired steering direction (00)

element 1-. =

e array line

x element 40

(Xn, Yn' Zn) = coordinates of the nth array element

(0,0) = cylindrical coordinates of steering direction. Towing ship connects to
element I and tows in negative x-direction; element 40 is "tail end"
of array.

an = complex number representing the Fourier coefficient of the desired
frequency bin for the nth element
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A = normalizing constant, indicating amount of energy contained in the
frequency bin

40

= >E lani
n=1

B(0,0,f) = beam response for frequency f

an exp j21f (Xn sin 0 cos 0 + Yn sin 0 sin 0 + Zn cos 0)
=20 logr: n(
•lgA

(1)

All of this processing was done in non-real time using the Center's Univac 1110
computer. The Fourier transforms were done using a canned FFT routine. This canned
routine used exp (+jwt) as the Fourier kernel, so exp (+j ... ) must be used in Eq. (1).
(Otherwise, the beam would be steered in a direction conjugate to the desired direction.)

For convenience in determining how well self-cohering is working, the term
"coherence" is coined. "Coherence" is equal to the value ii parentheses in Eq. (1). If a signal
is noise-free and consists entirely of a plane wave propagating from a single distant point
source, and if the element locations are known exactly, then there is a steering angle such
that the phase rotations introduced in the numerator of Eq. (1) exactly cancel the phase
rotations due to signal propagation, in which case all of the rotated an's add in phase and
the coherence is unity (ie, JZ a.1 = 1 lanl). Thus, a "perfect" beam has unity coherence,
and any degradation (such as noise or imperfect knowledge of array element locations)
causes coherence to be less than unity.

The amount of integration time is an important consideration in frequency-domain
beamforming. A Fourier transform is effectively a set of narrowband filters with bandwidth
inversely proportional to integration time. Coherent integration can be advantageously used
to discriminate against noise for only as much time as the signal is stable. If, during the
coherent integration time, the signal frequency drifts due to Doppler effects or the signal
phase changes because the array moves or bends, then the signal will cancel itself. An
"optimum" integration time for the data used for self-cohering was determined by trial
and error to be about 8 s. With less integration time, all of the frequency bins look more or
less the same (ie, no frequency lines stand out as being strong sources). With 8 s integration
time, it is usually possible to pick out several strong discrete-frequency sources. With more
integration time, most of the previously strong discrete frequencies begin to fade, and
computer costs mount rapidly. An integration time of 8 s corresponds to a frequency band-
width of about 1/8 Hz, which is about the same as that used (by persons connected with the
data-collecting exercise) in the original analysis of the line array data.



FINDING SOURCES SUITABLE FOR SELF-COHERING

Figure I is a sequence of plots of energy vs frequency. Each plot is a result of 8 s
worth of coherent integration and 40 elements' worth of incoherent integration; that is, an
8-s block of data from each array hydrophone is Fourier transformed, and the energy from
all 40 array elements is added together to produce the plotted value for each frequency bin.
This incoherent average over the array elements produces a little extra processing gain (not
as much as if the average could be done coherently), so that spectral lines can be seen in
Fig. I which could not be seen by looking at one element only.

Figures I a-i i are all normalized such that the highest value on each plot is placed
at 50 dB. Rolloff at the high end of the spectrum is due to the anti-aliasing filter in the
recording electronics. At the extreme right of each figure, the spectrum appears to level off
again: this is the noise floor established by quantization error in the 8-bit analog-to-digital
converters used in taping the data. This noise floor is an absolute constant, and therefore
individual plots from Fig. I may be compared with each other on an absolute (not relative)
scale by aligning the noise floors (instead of by aligning the 0- to 50-dB scales).

The data represented in Figs. la through lh came from day 256 of the at-sea
exercise. A, ording to ship's logs for that day, at time 1255 (Fig. 1 a) the array was straight,
the towing s.-,p was heading 295' , the towing speed was 3 knots, and the depth of the array
was 700 ft. At time 1300 (5 min later: Fig. Ib) the towing ship began a left turn to heading
2400. The next entry in the ship's logs is for a time over an hour later and is unrelated to
the turn. No mention is made in the logs as to when the towing ship straightened out on its
new heading or how large was the radius of the turn. People associated with the exercise
do not remember that specific turn, of course, but they say that generally when the ship
turned, it did so without slowing down and without making any allowances for the fact that
it was towing an array. Probably, therefore, the ship completed its turn in less than a couple
of minutes. These same people also say that they think that the array tends to follow itself,
so that the ship's relatively sudden turn propagates along the array as a kink moving at
about the towing speed. At a towing speed of about 3 knots, it would take about 14 min
for the kink to travel the 4000-ft length of the towing cable and reach the array itself.
Indeed, at time 1315 (Fig. le) the energy-vs-frequency plots show a sudden and drastic
increase in the low-frequency noise level. This extra noise is possibly flow noise caused by
hydrophones in the kink region being dragged sideways.

This extra noise is a serious problem when self-cohering is attempted. It is difficult
to tell whether a beam pattern is degrading because of decreasing signal-to-noise ratio or
because of array curvature. Besides, the extra noise occasionally saturates the recording
electronics, which upsets the phases of the desired signals in spite of the narrowband Fourier
transform filters.

Note in Fig. I that the control-source frequencies, 57 Hz and 23 Hz, never appear as
strong spectral lines. Occasionally a 56.5-Hz line appears, but subsequent beamforming
shows the source of that line to be at an angle to the array which is inconsistent with the
towing ship's heading and the control-source ship's location. However, data from day 251
(5 days earlier) show a 56.8-Hz source at an angle to the array only 60 different from what
would be consistent with towing heading and control-source location at that time. Also on
day 251, a second source ship was identified by independent means as it transited the
exercise area: that source shows up clearly as a sharp spectral line and beamforms at the
expected angle. This evidence for day 251 indicates that the Fourier transforming and
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beamforming algorithms used for the self-cohering experiment are correct (ie, free of such
mistakes as end-for-end swapping of the array numbering system), and that the failure of
the control-source lines to show up on day 256 is probably due to the control-source ship
having drifted out of a convergence zone.

An ideal source for self-cohering would be one which shows up as a strong line at a
constant frequency throughout all the plots in Fig. I ; the angle to such a source could be
tracked as a function of time so as to verify that the array was indeed turning in the correct
direction. Unfortunately, there is no such source. Frequency lines appear and disappear,
drift back and forth in frequency, sometimes appear to split into two frequencies, and
occasionally jump to different beam angles. Not being able to correlate any of these data
against known target locations detracts from the credibility of self-cohering, since it is
possible that a "signal" which appears out of what was pure noise prior to self-cohering
may be an artifact of the algorithm.

METHODS OF SELF-COHERING

Four different self-cohering algorithms were tested. All four assume that the line
array is flexible but not stretchable, and that the line array is piecewise linear (ie, that the
straight-line distance from any element to either of its neighboring elements is fixed at
125 ft). All four are designed to work on results from the Fourier transform of a single 8-s
block of data. Some thoughts on how to incorporate incoherent averagingover successive
time blocks are included later in this report.

LEAST-SQUARES FITTING

Reference I describes in detail the self-cohering method of least-squares fitting to
a parameterized array shape. The essence of the method is this: A single parameter is
chosen to represent how far along the array's length each element is located. The x- and
y-coordinates of each element are modeled by power series in that parameter, and the
z-coordinate of each element is then fixed by the non-stretch requirement. Data from
several different frequencies are fed to the algorithm, and the algorithm is told that the
data from each frequency represent a plane wave (or a spherical wave, or a cylindrical wave,
etc.) from a source at a specified angle to the array. The algorithm is also told an "initial
guess" for the array shape. The algorithm calculates what the phases of signals coming from
those sources ought to be at each element (assuming the elements are located at the
positions stated by the initial guess), and then calculates an error function given by the sum
of the squares of the differences between the actual phases of the data and the calculated
phases based upon assumed element positions. (The sum is taken over all data points; there
is one data point per array element per frequency.) An iterative technique seeks to mini-
mize this error function by changing the values of the coefficients of the power series. Once
a minimum is found, the "self-cohered" array shape is found by plugging the final coeffi-
cient values into the power series and evaluating x, y, and z for each element. This new
array shape is then used to beamform on targets other than those used to perform the

self-cohering.

The process of minimizing the error function for this least-squares method is mathe-
matically complicated. First derivatives of the error function relative to each power series
coefficient are set to zero, this gives a set of n equations in n unknowns (coefficients).
Unfortunately, the equations are nonlinear and cannot be solved exactly in closed form;
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so the second derivatives of the error function are used as linear approximations valid for a
small region around the true error function minimum. The matrix of equations is inverted
by diagonalizing (using an eigenvector transformation), inverting, and re-transforming to get
a trial solution.

No example of successful self-cohering by means of the least-squares fitting method
has yet been found. It is uncertain whether the problem is in the concept or the implemen-
tation. The method is so complex and abstract that it is virtually impossible to trace it
through step by step to see where it goes wrong. In nearly every attempt to use this method,
the algorithm produces a "final" array shape nearly identical to the "initial guess" array
shape and indicates little, if any, improvement in any of the beam patterns.

There are three possible explanations for the difficulty experienced with the least-
squares fitting method. First, the error function may be ill behaved with respect to the
coefficients (ie, the error surface may have saddles, peaks, and valleys, causing the algorithm
to get trapped in a relative minimum instead of at the absolute minimum). Second, the
model for x- and y-coordinates (each a power series in the parameter representing fractional
distance along the array length) may be inappropriate to shapes the array is likely to
assume (eg, it can easily be shown that even a simple parabolic shape cannot be exactly
matched by such a model). Third, the method tries to average over several targets at differ-
ent arrival angles; the true arrival angles are unknown, and the input estimates of the angles
may be so inaccurate that array shape changes which appear to improve one target may
cancel array shape changes which appear to improve a second target. These possibilities
have not yet been thoroughly investigated.

MAXIMIZING SHARPNESS

Reference 2 describes in detail the self-cohering method of maximizing the sharp-
ness of the beam pattern. The essence of the method is this: The array shape is modeled
by a Fourier series whose coefficients are the variables for the algorithm. For any set of
coefficients, the x- and y-coordinates of element locations are found by integrating for the
appropriate lengths along the array shape's arc. A beam pattern is calculated using data
from a single frequency and an assumed "initial guess" for the array shape. The square
of the intensity in the beam pattern is integrated over all steering angles in the beam pattern
to get a sharpness value. An iterative technique seeks to maximize this sharpness value
by changing the coefficients of the Fourier series. Once a maximum is found, the "self-
cohered" array shape is found by plugging the final coefficient values into the Fourier series
and evaluating x and y for each element. (The array is assumed two-dimensional; no attempt
is made to calculate z.) This new array shape is then used to beamform on targets other
than the one used to perform the self-cohering.

The process of maximizing the sharpness value for this self-cohering method is
mathematically simple: change one of the coefficients, and recalculate sharpness. If
sharpness is bigger than before, keep the change. If sharpness is less than before, return the
coefficient to its original value and try changing the next coefficient. Loop through all the
coefficients until sharpness no longer increases. The convergence characteristics of this
simple iteration are improved by increasing the rate of change of a coefficient whenever
sharpness increases, and vice versa (so that convergence is rapid when far from the solution
and slows down at the end to "zero-in" on the solution).

2H. Bucker, "Beanforming a Towed Line Array of Unknown Shape," J. Acoust. Soc. Am., 63 (5),
May 1978, 1451-1454.
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It is not completely clear why maximizing sharpness should necessarily produce the
correct array shape. The technique was originally proposed for an optical implementation
to compensate telescope images for aberrations due to atmospheric inhomogeneities. In
that context, it was shown that the maximum-sharpness criterion produces the correct
solution regardless of the image being corrected, but the proof is incomprehensible. Later
work takes issue with that proof by showing that the maximum-sharpness criterion cannot
produce the correct solution, although in a statistical sense over the ensemble of all possible
images it should come pretty close (Ref. 3).

An intuitive feel for why maximizing sharpness should tend toward the correct
solution can be obtained from the following simple argument. If the intensity of the beam
pattern were integrated over all arrival angles. the result would be simply equal to the total
energy incident on the array, and would, therefore, be independent of array shape. How-
ever, if the intensity is squared before integrating, then array shapes are favored which tend
to concentrate beamformed energy into narrow-angle, high-intensity spikes instead of broad-
angle, low-intensity background (a rectangle I unit wide and I unit tall has the same area as
a rectangle 1/2 unit wide and 2 units tall, but if the height is squared first, the tall and narrow
rectangle has greater sharpness). Most acoustic energy of interest comes from "point source"
targets, just the type of beam pattern favored by the sharpness criterion.

Regardless of whether the sharpness criterion produces the correct solution in the
optics case, it is evident that it does not always produce the correct solution in the acoustics
case. The maximum-sharpness self-cohering method has been tested in certain simulated
cases (where the "true" array shape and "perfect" beam pattern are known initially, and the
test of the self-cohering algorithm is to see if it can reveal the true array shape starting with
a wrong initial guess). and has been found to produce "wrong" array shapes for which beam
pattern sharpness was greater than for the "perfect" beam pattern! The problem appears to
be related to aperture sampling. An optical aperture is infinitely sampled, so its "beam
pattern" (optical transfer function) differs from a perfect delta function only because of
imperfect knowledge of arriving wavefront shape (atmospheric aberrations). On the other
hand, the acoustical array is very sparsely sampled (in fact, the array is undersampled for all
frequencies above 20 Hz). so much of the detail (sidelobes) of the beam pattern is due to
sampling statistics and has nothing to do with phase errors caused by imperfect knowledge
of the array shape. Hence, when the sharpness criterion is applied in the acoustic case, the
algorithm is apt to find an array shape unrelated to the true shape, which nevertheless
improves the beam pattern sharpness by changing the array sampling statistics to lower the
beam pattern sidelobes.

In spite of this possibility of converging on the wrong answer, Ref. 2 indicated
success in using the maximum-sharpness self-cohering method to improve the beam pattern
for an actual acoustic array. Reference 2 had no way of checking whether or not the self-
cohered array shape was the "correct" shape, and did not attempt to use the self-cohered
shape to improve the beam patterns of any frequencies other than the cohering frequency.

For this report, the maximum-sharpness criterion in its pure form was not much
used because of excessive computer time demands. Each time a coefficient in the Fourier
series is changed, the x-y coordinates of all the array elements change, so that tile number

of calculations in the beam pattern is proportional to the product of the number of beams
and the number of elements.

3 T. Brown. "Performance of Image-Plane Sharpness Criteria in Image Reconstruction," I. Opt.
Soc. Am., 68 (7), July 1978, 890-892.
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A shortcut for the maximum-sharpness technique is to vary the x- and y-coordinates
themselves, instead of varying the coefficients of a Fourier series. When only a single x- or
y-coordinate is changed, the beam pattern can be recomputed by subtracting the contribu-
tion of the new element location, reducing the number of calculations (after initially finding
the beam pattern) to be proportional to the number of beams only.

This shortcut form for the maximum-sharpness method is much faster than the pure
form, but it suffers from not taking full advantage of the shape characteristics of a towed
array. The pure form, with its Fourier series array shape model, has a built-in low-pass
spatial filter due to the finite length of the series. The shortcut form has no such filter, and
self-cohering by the shortcut tends to respond to noise in the element data by putting too
many zigs and zags into the array shape. The shortcut form has produced some dramatic
improvements in the beam pattern at the self-cohering frequency, but its ability to produce
improvement in beam patterns at other frequencies has not been extensively tested.

MAXIMIZING COHERENCE

The essence of this method is: The array shape is again modeled in two dimensions
by a Fourier series whose coefficients are the variables for the algorithm. For any set of
coefficients, the y-coordinate of the nth element is found by evaluating the Fourier series
in the x-coordinate of the nth element:

Y m [Am sin (M~r xn + Am+7 cos (MiXn)
m=l

where

the Am's are the coefficients of the Fourier series

L is the array length.

Then the slope of the array shape curve is found at the nth element, and the x-coordinate of
the (n t- 1 )th element is derived from this slope with a linear approximation designed to
keep the interelement distance constant at AL:

7
dy 7 - ImA m cos (-n) - mAm+7 sin n)]

dx L l (L)

AL
xn+l = Xn +

! + (dy/dx)2

(The array element locations are found one at a time: Yn is found from xn, then xn+ 1 is
found from dyn/dx n , then Yn+l is found from Xn+ 1, etc.). Data from one frequency are
fed to the algorithm, and the algorithm is told that these data represent a plane wave from a
source at a specified steering angle. The algorithm calculates the coherence (as prescribed
in the section on "Beam forming") of the data, using the specified steering angle and the
calculated element locations. An iterative technique seeks to maximize the coherence by
changing the coefficients of the Fourier series. This latter technique is the same as that
used in the maximum-sharpness method.
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Coherence is really nothing more than the normalized beam pattern for one steering
angle. Thus, this method combines the good features from both the pure and shortcut
forms of the maximum-sharpness method: the Fourier series array shape model has the
appropriate low-pass spatial filter characteristics- but even though all of the element
locations change whenever a single Fourier coefficient changes, the recalculation of
coherence does not require much computer time because the calculation need be done at
only one steering angle.

Simulations indicate that the maximum-coherence method can find the correct
array shape even when shape errors (difference between correct shape and "initial guess")
are on the order of t a wavelength at the cohering frequency. For shape errors greater
than one wavelength, the iterative algorithm tends to get confused at some false relative
maximum (the same trouble as the "saddles, peaks, valleys" problem mentioned in the
section on "Least-Squares Fitting"). For frequency domain beamforming with only one
cohering source, this is a fundamental problem. If more than one cohering source is avail-

able, the array could be "rough-tuned" by first cohering at the lowest frequency (longest
wavelength), then "fine-tuned" by using the rough array shape as an initial guess for

cohering at the higher frequencies.

One further difficulty with the maximum-coherence method appears to be related to
the problem of nonuniform array-element amplitude response. The plots in Fig. 2 demon-
strate the severity of the problem. The amplitude of the complex data from each array
element acts as a weight in the sums used to calculate coherence, so the maximum-coherence
self-cohering method tends to favor high-amplitude elements and to produce array shapes
with extra contortions added to fine-tune the high-amplitude elements without regard to
the phase errors consequently produced at the low-amplitude elements.

The plots in Fig. 2 show normalized amplitude versus position along the array. The
time histories of data from each element are first Fourier transformed, and the plots of
Fig. 2 are taken from only those frequency bins which show strong spectral lines in Fig. 1.
The element responses are obviously very nonuniform, bat the cause has not been investi-
gated. Some possibilities are signal fading, anomalous noise, dead array elements, and
multiple interfering sources.
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COMPENSATING RESIDUAL PHASES

The final self-cohering method involves the low-pass spatial filtering of residual
phases and adjusting array element locations to cancel the results for a given steering
direction. Once again, the array is assumed to lie in the x-y plane.

The data are first beamformed in the ordinary manner, using the assumption that
the array is straight. The beam pattern is scanned to find the steering angle with the greatest
coherence. This must be the angle for which the signal phases at the array elements are
most nearly perfectly aligned. The phase angle by which each element, when steered in the
appropriate direction, fails to align with the general trend of the other elements is called the
residual phase. Residual phase is due partly to noise corrupting the signal and partly to
errors in the assumed array shape. Noise is uncorrelated between elements and, hence,
changes rapidly along the array. Array shapes assumed by a towed array are not likely to
zig-zag much from element to element. Therefore, much of the noise can be removed from
the residual phases by low-pass spatial filtering.

This filtering is performed simply by averaging together the residual phases from
adjacent elements. The number of adjacent elements used determines the "bandwidth"
of the filter. Phases themselves, being modulo 21r, are hard to work with because of a
discontinuity at ±-r. So the actual filtering is done using the complex-number represen-
tations of rotating phasors (ie, average eJ O, not 0).

After filtering, the residual phases are converted to lengths by dividing by the wave-
number (for example, a residual phase of 90' represents a distance of a quarter of a wave-
length). The array elements are then located as follows. Element 1 is placed at (0,0). A
circle is drawn about the nth element with a radius equal to the fixed interelement distance
of 125 ft. Two parallel straight lines are drawn at an angle to the x-axis given by the desired
steering direction, as shown below.

desired steering direction

y

/ actual location of (n + 1 )th element

residual phase
hy between nth

and (n + 1 )th

elements

location of (n + 1)th element
if array were straight

nth element

These two lines represent plane wavefronts. The first line represents the phase that
the (n + I )th element would have (relative to the nth element) if the array were straight.
The second line represents the actual phase at the (n + 1)th element. The point of inter-

*section of this second line with the circle is taken to be the location of the (n + 1 )th element.
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(If the line intersects the circle at two points, the point more nearly in the positive
x- direction and nearest the x-axis is chosen to prevent the array shape from folding back
on itself. If the line does not intersect the circle, because of noise, the point on the circle
horizontally from the nth element is chosen for want of a better choice.)

Most of the good self-cohering results presented in this report were obtained using
this residual-phase method. The method is so simple and so fast (no iterations required)
that it is very easily tailored to meet the idiosyncracies of each particular situation. How-
ever, simplicity is also the method's biggest problem: success requires constant attention.
The width of the spatial filter seems to require readjustment to meet different noise
conditions, and the cohered array shape often has glitches and sudden jumps, apparently
due to abnormally large phase errors or modulo-2i problems.

Perhaps the spatial filtering of residual phases would be unnecessary if noise could
be reduced to a low enough level by time integration. Incoherent time integration is usually
done by computing a covariance matrix. (The mnth entry in the covariance matrix for one
frequency is the time average of the product of the spectral component of the mth array
element and the complex conjugate of the spectral component of the nth array element.
The spectral components are found by a Fourier transform over a block of time, and the
time average is taken over successive blocks.) The entries in the covariance matrix actually

represent residual phases (ejom . i(mOn)), so the covariance matrix may be utilized
directly in the residual-phase self-cohering method.

RESULTS OF SELF-COHERING ON HIGH-FREQUENCY TARGETS

Figure 3 shows beam pattern plots from time 0050, day 258 of the sea-test exercise.
(The energy-vs-frequency plot for this time is Fig. I i.) According to ship's logs, this time
is 20 min after the towing ship began a right-hand turn from heading 2700 to heading 004'.
The horizontal axis of the Fig. 3 plots is beam steering angle relative to the tail end of the
array; 1800 points toward the towing ship. The array is 2000 ft deep.

Beam aliasing occurs in an equally spaced line array whenever element spacing is
greater than half wavelength. The wavelength at 75 Hz is about 70 ft, considerably less
than twice the 125-ft element spacing for this array, so beam aliasing occurs in all the
Fig. 3 plots.

Note that the beam patterns in Fig. 3 are not theoretical shapes of sidelobes due to
particular array sampling densities, but rather are actual array responses when steered
through the true sound field.

Figure 3a shows the beam pattern at 77 Hz (it is assumed that the array is straight).
The peak coherence is 0.57. Because of aliasing, this peak occurs at three different angles;
and because of right-for-left ambiguity (a straight line is symmetric), each of the three
peaks also appears folded about 1800.

The data for 77 Hz were subjected to self-cohering , using the maximum-coherence
method with a specified steering angle of 560. Figure 3b shows the resulting array shape.
(The towing ship is at the left, towing in the negative x-direction.) Figure 3c shows the
beam pattern recalculated using the new array shape. The coherence has increased to 0.913.
the peaks have become sharper, and (because the array is no longer symmetric) the beams
folded around 1800 have been significantly suppressed.
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I
Figures 3d, 3f, and 3h show beam patterns for three differen. frequencies at this

same time of day. A straight line array is assumed in each case. Figu es 3e, 3g, and 3i are
recomputed beam patterns using the array shape of Fig. 3b. In all.cases, these beam
patterns show significant increase in coherence, sharpening of main peaks, and suppression
of foldover peaks; this improvement accrues in spite of the fact that the array shape came
from cohering a'different frequency.

There are problems with these data. Although the beam patterns look much better
after self-cohering, there is no guarantee that the improved peaks are the true peaks.
Figure 3a has six peaks, of which the one at 560 was arbitrarily chosen for self-cohering.
Presumably, any of the remaining five peaks would have worked as well.

Presumably, also, if one of the peaks at an angle greater than 1800 had been used
for self-cohering, the resulting array shape would have curved the other way. Furthermore,
the curve shown in Fig. 3b as being in the x-y plane because of a turn by the towing ship
might actually be in the x-z plane because of array sag. The self-cohering algorithm sees
only the phases of the signals at the elements, and cannot tell from that information which
way the array curves, only that it does curve. This might be a problem with the least-
squares fitting method, which tries to include z in its array-shape model, when in fact there
may not be enough information to determine z.

In fact, the curve in Fig. 3b may not even represent array curvature at all. Perhaps
the source of the signals used in Fig. 3 is the towing ship itself, which is so close to the
array that the wavefronts don't look planar. The curve in Fig. 3b may be the self-cohering
algorithm's attempt to compensate for near-field wavefront curvature. There is some
evidence to support this possibility. Figure 4a shows the straight-array beam pattern of
still another spectral line from Fig. I i. Peak coherence for this frequency is 0.63, which is
better than any of the pre-cohering coherences in Fig. 3, in spite of the fact that the Fig. 4
frequency has a shorter wavelength (hence more severe degradation from array curvature)
and a poorer signal-to-noise ratio (as seen by the height of the spectral line in Fig. I i) than
most of the Fig. 3 frequencies. When the cohered array shape of Fig. 3b is used on the
Fig. 4 frequency (Fig. 4b), there is very little improvement in coherence (from 0.63 to 0.69).
Nevertheless, when the Fig. 4 frequency itself is self-cohered, coherence improves to 0.81.
Evidently, the Fig. 4 frequency is seeing an apparent array shape that is straighter than the
apparent array shape seen by the Fig. 3 frequencies. The only obvious explanation for this
is that the Fig. 4 frequency comes from a distant source, and that the array really is as
straight as the Fig. 4 frequency thinks it is, that the Fig. 3 frequencies come from a near-
field source, and that the shape in Fig. 3b is an artifact of near-field wavefront curvature.

Figure 5 is an attempt to determine whether or not the amount of curvature observed
in Fig. 3b could logically be explained by assuming the towing ship to be the signal source.
Figure 5 shows a scale drawing of the array at the end of the towing cable at the proper
depth. The array is curved so as to produce a constant angle between it and a line drawn
from the towing ship, which seems to be a reasonable approximation of what the self-cohering
algorithms would attempt to do. The resulting curve deviates from a straight line by about
250 ft, which is considerably more curvature than what is shown in Fig. 3b (which deviates
by less than 50 ft). Perhaps there is another ship in the area, a little more distant than the
towing ship but still in the near field.

The results of this analysis indicate that self-cohering can significantly improve the
array's ability to discriminate targets from noise, even at aliased frequencies, but that target
angles and array shapes remain uncertain.
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RESULTS OF SELF-COHERING ON LOW-FREQUENCY TARGETS

Self-cohering was attempted for much of the data from day 256 (as described in the
section "Finding Sources Suitable for Self-Cohering" and shown in Figs. la through lh).

From time 1255 until time 1310, good-quality beam patterns (coherence >0.8) could

almost always be obtained without any self-cohering at all. Figure 6 shows some examples

of beam patterns on the assumption of a straight array. Figure 6c shows 58.5 Hz beam-

formed to a peak coherence of 0.87, which is only about 1 dB (take 20 log of coherence)

less than perfect. By rule of thumb, coherence this good cannot be obtained unless array-

element positions are known to an accuracy of a tenth of a wavelength, which at 58.5 Hz is

8.5 ft. Very likely, therefore, the array deviates from a straight line by less than 9 ft during

this time.

Often, during this time, a frequency which showed up on Fig. 1 plots as being a

very strong spectral line would beamform poorly under the straight-line assumption, even

though higher frequencies with weaker spectral lines would beamform well. Self-cohering

algorithms would effect no improvement. The problem appears to be that several different

targets radiate nearly coherent signals. For example, the frequency 19.5 ± 1/8 Hz shows up

as a strong spectral line (usually the strongest) on each of the Fig. 1 plots; even on day 251

(1 week earlier than Fig. I i), 19.5 Hz is strongly present. Yet, 19.5 Hz usually beamforms

poorly. By chance, it was noticed that at time 1310 (Fig. I d), frequency 19.375 Hz appears

to have a sidelobe of 19.750 Hz. Indeed, Figs. 7a and 7b strongly suggest the presence of

two targets separated by almost 700 in arrival angle. It is suspected that two targets have

been present all along, spoiling self-cohering efforts with constructive and destructive phase

interference. (This in itself is an enigma. The peaks in Figs. 7a and 7b are at completely the

wrong angles to be coming from the towing ship; yet, what other ship targets would have

lingered for over a week?) Similarly, frequency 21.625 Hz certainly looks like a single

target in Fig. I d, but was shown to be at least two (maybe four) separate targets 15 min
earlier (at time 1255). Figure 7c is an example of the unusual shapes that result from

attempts to self-cohere multiple targets: the jog in the center is apparently the result of a

single null caused by destructive interference between signals from different arrival angles.

At about time 1315 (Fig. le), the turn (begun by the towing ship at time 1300)
reaches the array. The noise level at this time is the worst of all the times shown in Fig. 1,

and some clipping was noted at the analog-to-digital converters when the magnetic tapes

were being digitized. Nevertheless, self-cohering by the compensate-residual-phase method
was able to effect some minor improvement. Self-cohering applied to 58.0 Hz improved

coherence from 0.63 to 0.72; and when the array shape resulting from self-cohering
(Fig. 8a) was used to beamform frequency 29.5 Hz, coherence increased from 0.668

(Fig. 8b) to 0.768 (Fig. 8c). The self-cohering algorithm was also applied to 29.5 Hz, and,
as expected, the resulting array shape (Fig. 8d) looks very similar to the array shape from
58.0 Hz. Both these frequencies are from sources nearly at right angles to the array. More
difficulty is encountered trying to self-cohere on a signal arriving more nearly endfire.
Frequency 18.0 Hz would not self-cohere at all unless the low-pass spatial filter was
removed completely from the self-cohering algorithm. The resulting array shape (Fig. 8e)
is irregular, but in general exhibits the same slow curving trend as Figs. 8a and 8d. Evidently,
the combination of lots of noise, a few bad hydrophones, a long wavelength, and a steering
angle near endfire makes self-cohering difficult.
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At time 1320, self cohering was not too successful for some unknown reason.
Several frequencies could be self-cohered to yield very good beam patterns at frequencies
other than the self-cohering frequencies. Figures 9a and 9b are examples of these array
shapes. There is agreement as to how much the array deviates from straight, but very little
agreement as to specific shape details. Possibly this is due to poor element-amplitude
uniformity, as seen in Figs. 2c and 2e.

At time 1325, frequency 18.125 Hz, when subjected to self-cohering, increased in
coherence from 0.542 to 0.793. When the resulting array shape (Fig. 10) was used to beam-
form 19.5 Hz, coherence increased from 0.625 to 0.844. Both these frequencies are from
sources very nearly endfire to the array.

At time 1326, when self-cohering was first applied, none of the beam patterns
showed any improvement at all. In fact, the beam patterns were so bad that it was difficult
to say whether or not targets were present. Figure 1 Ia is typical. The problem (discovered
by accident) was that the array curvature was many times greater than had previously been
encountered. This is dramatically shown in the residual phase plot of Fig. I I b. In the
absence of any element location error, if the array is correctly steered, all element phases
should line up, and the residual-phase plot should be a straight horizontal line. If the array
is really straight but is steered in slightly the wrong direction, the residual-phase plot should
be a straight slanted line. In Fig. I Ib, the residual phase is really parabola shaped (vertex
at right, opening upward), but the sides slant so much that they are forced to zig-zag
because phase is modulo-21r. The original width of the low-pass spatial filter in the
compensate-residual-phase self-coherence was seven elements (ie, to estimate the phase at
one array element, the phases from the three elements on either side are averaged together).
Obviously, from Fig. II b, the phasc is changing so rapidly near the left end of the array that
such an average will almost surely be zero.

When the width of the spatial filter was decreased to three elements (one element
on either side), the self-cohering algorithm worked well. The coherence of 19.625 Hz
increased from 0.44 (Fig. I la) to 0.882 (Fig. 1 Id). The resulting array shape (Fig. I lc)
shows more than 600 ft of deviation frorm straight (nearly three wavelengths)! When the
array shape from self-cohering 19.625 Hz was used to beamform other frequencies, the
following improvements resulted:

Summary of Self-Cohering Improvements

coherence using
frequency, coherence assuming array shape steering angle,

Hz straight array from 19.625 Hz deg

19.625 0.440 0.882 77

21.75 0.460 0.771 142

29.375 0.515 0.738 78

46.000 0.374 (Fig. lIe) 0.617(Fig. I If) 70

56.500 0.487 (Fig. I Ig) 0.571 (Fig. I Ih) 120
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Most of the above frequencies were from target angles more or less broadside to the
array (from 700 to 1200), but one frequency is from a target closer to endfire (1420). It is
evident that the array shape self-cohered from one frequency can be used to improve beam
patterns not only at other frequencies, but at other target angles as well.

Still at time 1326, the residual-phase self-cohering method with narrowed spatial
filter was applied to some of the other frequencies. The resulting array shapes are shown in
Figs. I Ii through I I k. All these shapes show the same basic curvature as Fig. I lc. The
shape from 21.75 Hz (Fig. 1 Ii) is virtually identical to the shape from 19.625 Hz (Fig. IlIc)
except for the little upswing at the tail end; the residual-phase plot for 21.75 Hz shows an
anomaly at that point, perhaps due to hydrophone failure or noise saturation. The shape
from 29.375 Hz (Fig. I lj) is virtually identical to the shape from 19.625 Hz except for the
first 900 ft of the array; cause unknown. The shape from 46.0 Hz (Fig. I lk) is virtually
identical to the shape from 19.625 Hz for the first 3000 ft of the array; the deviation
toward the tail end is possibly due to poor signal amplitude there, as shown in Fig. 2f.
Shapes from 21.75 Hz and 29.375 Hz, when used to beamform at other frequencies, caused
significant beam pattern improvement, though not as great as shown in the above table. The
shape from 46.0 Hz did not improve beam patterns at any other frequencies.

In all cases, the self-cohering algorithm was applied using a straight array shape as an
initial guess. Further work in this area should include using the self-cohered shape from one
frequency as the initial guess for self-cohering a second frequency.

Frequency 17.875 Hz also shows a strong spectral level at time 1326 (Fig. lh).
When beamformed assuming a straight array, coherence was 0.613 with a target angle of
7' (very nearly endfire). Self-cohering successfully raised coherence to 0.858. The result-
ing array shape (Fig. II Q) looks similar to the shape for 19.625 Hz, but neither beam pattern
(17.875 Hz and 19.625 Hz) is improved when the other's array shape is used. The possible

explanation is that the target arrival angles are too different: self-cohering at one angle
causes correction of the y-component of array curvature and self-cohering at the other angle
causes correction of the x-component of the array curvature, and small errors cause the two
to be independent.

Figures 8a, 9a, 10, and I Ic indicate a gradual progression over a period of 11 min of
the array shape from nearly straight to well curved, as would be expected of an array being
towed through a turn.
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SIGNAL-TO-NOISE CONSIDERATIONS

Figures I I c through I If have indicated that with a "strong" signal source, it is
possible to recover a reasonable array shape from an intial guess which is in error by con-
siderably more than a wavelength. This section is a simplistic analysis to establish an
estimate of the signal-to-noise ratio required at the cohering frequency to effect beam
pattern improvement at some other frequency.

Let there be N elements in the array. Signal amplitude S from a localized source and
noise amplitude M from an isotropic source impinge on the array. The compensate-residual-
phase method is used to self-cohere the array, with a spatial filter width of 2b + 1 elements
(ie, b elements on either side of center). Steer the array toward the signal source; let 0m be

thn
the residual phase at the mth element due to imperfect knowledge of the element locations.
Noise is independent from element to element, so the noise phase Om is a random variable,
uniformly distributed from 0 to 21r, uncorrelated between elements. The total voltage
ieceived at the mth element is

S e +Me

The spatial filtering operation (part of the residual-phase method of self-cohering) involves
averaging over adjacent elements, so that the result at the nth element is

n+b e~

Zn = 1 (S ( i +M j
n 2b+l _ e M

m=n-b

Now Zn is a random variable. Its expected value is

n+b

E(Zn) S 2 [ S E(ej m) + M E( Om)]
mn=n-b

The variable 0 m is completely random, so E(e m ) = 0. The variable Om is deterministic,
being due to the unknown (but presumably fixed) array shape. The usefulness of the
spatial filtering is predicated upon a much slower element-to-element variation in Om than
in 0 m , so that for m within b of n, Om - On:

E(eJr)_ enforn -b <m<n+b

n+b
E(Zn) I (S en + 0) = S ej e n (22b+l (2)

m=n-b

This means that, on the average, the spatial filtering procedure is able to extract the true
residual phase (due to array shape) from the midst of random phase (due to noise).
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Now find the variance contributed by the noise.

(2b+1) 2  m p_1 p
1 \'''F2 ~j(Om-p) + SM e~om~p) + SM MnimOp)

(2b+1)2 m p

+ M2 eJ(O0 p)

To compute E(Z-), note that:

0 and 0 are uncorrelated, so E -  0.

0 m and 0p are uncorrelated if m =A p, so E [e(0m '0p) =0form=*p.

om and 0p are approximately :.-qual for all m and p.

Therefore,
E12) 1 2(  2] =S+M2

E (2b+) 2  2b+l)2S2+(2b+l)M2 $2 2b+1

The variance is

02 =E(Z )E M 2

n n s2b+l

M (3)

Equations (2) and (3) may be interpreted as saying that the output of the spatial-
filtering process of the residual-phase self-cohering method is the sum of two vectors (in
complex space). One of those vectors has amplitude S and phase n [Eq. (2)]. The second
vector has amplitude M/2b+l and completely random phase [Eq. (3)1. (See diagram a.)
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imaginary
resultant vector

.** noise vectorI
/ real

\ /
\ /

"v circle of radius

Diagram a.

The output of the spatial filter is the self-cohering algorithm's best estimate of the

residual phase On due to array non-straightness. Suppose that the signal arrival angle is more

or less broadside to the array; then the algorithm compensates for residual phase by trans-
lating it directly into element y-coordinate displacement:

27r

However, as indicated in Diagram a, the algorithm's best estimate of residual phase will be
in error by an angle e, and therefore the calculated y-coordinate displacement will be in
error by

nnn

where X is the wavelength of the self-cohering frequency.

Worst-case e occurs whe!n the noise vector is more or less perpendicular to the signal vector,
at which point:

-/noise \ =_rta __

e = arctan oise arctanS

Up until the point where the argument of the arctan is about 2, the arctan may be approx-
imated by its argument:

M
SVT2"b+I
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So

XM
21r SV2b+l

The self-cohered array shape is built up element by element by adding to the
(n-I)th y-coordinate an amount sufficient to compensate for the estimated phase difference
between the nth and (n- 1)th elements. Thus, there is a tendency for errors to accumulate.
When random errors are added, the rms error increases as the square root of the number of
independent terms in the sum. There are N elements in the array, but because of the spatial
filtering, only N/2b+! of the Ay terms are independent. The total error in the self-cohering
method's estimate of how much the array shape is likely to differ from straight is:

- N _ XM N XM ,/N_ A__ = - = (4)
b+I 2IrS/2b+ 2b+l 27 S(2b+l)

Suppose that the true array shape differs from the initial-guess shape by an amount .

The self-cohered shape will effect some improvement of beam patterns of other targets only
if the self-cohered shape error is less than the initial-guess error:

From Eq. (4), this means that

S_> (5)
M 21rt(2b+l)

Equation (5) gives a lower bound on the signal-to-noise ratio at a single array
element in order that the array shape may be calculated (via a self-cohering algorithm)
with sufficient accuracy to effect improvement in the beam patterns of targets at other
frequencies. This bound does not guarantee that the beam patterns of other frequencies
will be improved up to the limits established by their own signal-to-noise ratios (ie, a beam
pattern cannot be made perfect if noise is present, even if the array shape is known exactly);
it only guarantees that the beam patterns won't get any worse by using the self-cohered
array shape than they already were with the use of the initial-guess array shape.

Obviously, the derivation of Eq. (5) is not rigorous. The most glaring deficiencies
are the "small-noise" approximation, the elimination of steering angle from consideration,
and the sort of haphazard use of the concept of array shape "deviations from the initial
guess." Probably the equation is adequate for a ballpark estimate of required signal-to-
noise ratios. For example, for the array considered in this report:

N = 40 elements,

2b+ l = 7-element-wide spatial filter.

I wavelength deviation of true array shape from initial guess(---- I)

S > I' '- = 1 16.8 dB

M 2irX(7) 7
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This is an overly optimistic prediction, since a noise voltage 7 times larger than the signal
voltage (at one element) obviously exceeds the "small noise" approximation used in
deriving Eq. (5).

A computer simulation has been performed that verifies that self-cohering can
indeed be successful with a signal-to-noise ratio (at one array element, at the cohering
frequency) as poor as 1/2. An arbitrary array shape was chosen (Fig. 12a). Signals at two
frequencies (19 Hz and 25 Hz) and two arrival angles (100' and 700 from endfire) were
simulated (the noise-free 19-Hz beam pattern is shown in Fig. 12b) and then corrupted with
various amounts of noise. In the noise-free case, the 19-Hz beam pattern is severely
degraded if the array is assumed to be straight (Fig. I 2c), but the compensate-residual-
phase self-cohering method can recover a reasonable estimate of the array shape (Fig. I 2d)
(using a straight line as an initial guess) and restore the beam pattern to near perfection
(Fig. 12e). Figures 12f through 12h show a similar sequence for the case of noise equal in
amplitude to the signal; the self-cohered array shape (Fig. I 2g) is still recognizable, and the

self-cohered beam pattern (Fig. 12h) is nearly as good as the beam pattern which uses
perfect knowledge of the array shape (Fig. 12f). Figures 12i through 129 show a similar
sequence for the case of noise amplitude twice as large as signal amplitude. The beam
pattern is not very good, even using the true array shape (Fig. 1 2i). When the array is
assumed to be straight, the beam pattern is so poor that the target is lost (Fig. I 2j). (The
apparent peak at about 800 is a false sidelobe, not the target). The self-cohered array shape
(Fig. 12k) has only slight resemblance to the true array shape, but is nevertheless close enough
to the true shape to recover the target in the beam pattern (Fig. 1 2V). With noise twice as
large as signal, the 25-Hz target (Fig. I 2m) also disappears when the beam pattern is drawn
using a straight array shape (Fig. I 2n); but the 25-Hz target reappears (Fig. I 2o) when the
array shape (Fig. 12k) resulting from self-cohering 19 Hz is used.
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SUMMARY

Self-cohering has been tested with apparent success on recorded data from a 5000-ft
towed line array. While the towing ship was on a "straight" course, the array apparently
deviated from a straight line by less than 10 ft over its entire length. While the towing
ship was turning, signals from a target at 20 Hz with an arrival angle near broadside were
used to calculate a two-dimensional array shape differing by nearly three wavelengths
(600 ft) from a straight-line initial guess. The calculated array shape was used to beam-
form at other frequencies, uncovering a 46-Hz target which was completely obscured
prior to self-cohering. These results are summarized as follows.

Summary of Self-Cohering Improvements

coherence using
frequency, coherence assuming array shape steering angle,

Hz straight array from 19.625 Hz deg

19.625 0.440 0.882 77

21.75 0.460 0.771 142

29.375 0.515 0.738 78

46.000 0.374 (Fig. lIe) 0.617 (Fig. I If) 70

56.500 0.487 (Fig. lg) 0.571 (Fig. lh) 120

Especially note: the target at 46.000 Hz is undetectable if the array is assumed straight
(Fig. II e), but is easily detectable after self-cohering (Fig. 1 I f).

Several different algorithms for self-cohering have been developed and tested. The
simplest has been the most successful. No single set of algorithm parameters has yet been
found which works well for all conditions.

Right-for-left ambiguity and beam aliasing, plus lack of control over the experimental
conditions, cause uncertainty about true target locations and characteristics. Possibly the
apparent array shapes found by self-cohering are due to near-field wavefront curvature
rather than to turns by the towing ship.

Theoretical calculations indicate that self-cohering can be accomplished with a
signal-to-noise amplitude ratio at the cohering frequency as poor as 1/2 (which is -6 dB).
Computer simulations confirm weak-signal recovery under those conditions.
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